skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chou, Li"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A popular approach to reduce the size of a massive dataset is to apply efficient online sampling to the stream of data as it is read or generated. Online sampling routines are currently restricted to variations of reservoir sampling, where each sample is selected uniformly and independently of other samples. This renders them unsuitable for large-scale applications in computational biology, such as metagenomic community profiling and protein function annotation, which suffer from severe class imbalance. To maintain a representative and diverse sample, we must identify and preferentially select data that are likely to belong to rare classes. We argue that existing schemes for diversity sampling have prohibitive overhead for large-scale problems and high-throughput streams. We propose an efficient sampling routine that uses an online representation of the data distribution as a prefilter to retain elements from rare groups. We apply this method to several genomic data analysis tasks and demonstrate significant speedup in downstream analysis without sacrificing the quality of the results. Because our algorithm is 2x faster and uses 1000x less memory than coreset, reservoir and sketch-based alternatives, we anticipate that it will become a useful preprocessing step for applications with large-scale streaming data. 
    more » « less